Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares
نویسندگان
چکیده
Abstract A new Levenberg–Marquardt (LM) method for solving nonlinear least squares problems with convex constraints is described. Various versions of the LM have been proposed, their main differences being in choice a damping parameter. In this paper, we propose rule updating parameter so as to achieve both global and local convergence even under presence constraint set. The key our results perspective from majorization-minimization methods. Specifically, show that if set specific way, objective function standard subproblem methods becomes an upper bound on original certain assumptions. Our solves sequence subproblems approximately using (accelerated) projected gradient method. It finds $$\varepsilon$$ ε -stationary point after $$O(\varepsilon ^{-2})$$ O ( - 2 ) computation achieves quadratic zero-residual error condition. Numerical compressed sensing matrix factorization converges faster many cases than existing
منابع مشابه
A secant method for nonlinear least-squares minimization
Quasi-Newton methods have played a prominent role, over many years, in the design of effective practical methods for the numerical solution of nonlinear minimization problems and in multi-dimensional zero-finding. There is a wide literature outlining the properties of these methods and illustrating their performance [e.g., [8]]. In addition, most modern optimization libraries house a quasi-Newt...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملLeast – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملNonlinear residual minimization by iteratively reweighted least squares
In this paper we address the numerical solution of minimal norm residuals of nonlinear equations in finite dimensions. We take particularly inspiration from the problem of finding a sparse vector solution of phase retrieval problems by using greedy algorithms based on iterative residual minimizations in the `p-norm, for 1 ≤ p ≤ 2. Due to the mild smoothness of the problem, especially for p→ 1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2023
ISSN: ['0926-6003', '1573-2894']
DOI: https://doi.org/10.1007/s10589-022-00447-y